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Abstract 

This report analyzes the eddy currents induced in a solid conducting 
sphere by a sinusoidal current in a circular loop. Analytical expressions for 
the eddy currents are derived as a power series in the vectorial displacement 
of the center of the sphere fromthe axis of the loop. These are used for 
first order calculations of the power dissipated in the sphere and the force 
and torque exerted on the sphere by the electromagnetic field of the loop. 
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Table of Notation 

I 

E +  
B +  
A +  

J +  
I +  
o +  

4 + 

d +  
u +  
n r +  
e +  A 

@ +  

Electric Field 
Magnetic Induction 
Vector Potential 
Current Density 
Current 
Frequency 
permeability of free space 
Skin depth 

Unit Radial Vector 
Unit Latitudinal Vector 
Unit Azimuthal Vector 

Conductivity 

ex ,ey ,ez + Unit Cartesian Vectors 
s=( “,es ,as ) , c-( c,Oc ,ec ) , r=( r,e,+) 
d + Displacement of sphere center from axis of loop 
a + Radius of sphere 
b + Radius of loop 
n + ~ormal unit vector to loop 
Pn,$ + Legendre functions 
Jn ,Kn ,In ,Yn + Eessel functions 

b i j  + Kronecker delta 
i + Unit imaginary 
qm + Vector Spherical Harmonics 

+ Postion vectors 

+ constants Cn 4 ICnm ,Ann IBnm t’nm 
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Introduction 

This report is an extension of research by David Sonnabend [1,2] on the 

control of suspended objects by eddy current forces, and it was carried aut at 

his suggestion. 

drag free gradiometer to be used in artificial space satellites. 

The results are potentially useful in the design of a quasi 
s 

In this study we are concerned with effects on a conducting sphere of the 

electromagnetic field produced by a steady state alternating current in a 

circular coil. 

which dissipate power and interact with the field to produce a force and 

torque on the sphere. Our objective is to derive analytical expressions 

describing these effects. The central task is to solve the steady state 

electromagnetic boundary value problem for a conducting sphere in the 

oscillating field of the current loop. 

for the special case where the center of the sphere lies on the axis of the 

loop [3 ,4 ] .  

work en pioblea of this type, 

solution to our general problem in terms of an integral over the loop. 

result is summarized in Appendix M of this report. 

the difficulties in evauiauiiy  ALA^ ..- - _  -. 

practical to solve the problem -- ab initio by a different method. 

variety of promising approaches. Expansions in terms of Lame’ polynomials [ 6 ]  

seemed most promising because these functions possess both the symnetries and 

asynmetries of our problem. 

polynomials is not sufficiently well developed to make all the necessary 

calculations easy. we finally settled on expansions in terms of spherical 

harmonics in large measure because many theorems about these functions are 

available to facilitate calculations. This enabled us to find a practical (if 

not optimal) solution to our problem. 

The oscillation field induces eddy currents in the conductor 

The problem was solved some time ago 

Tegopoulos and Kriezis (41 give a valuable survey of analytical 

Hannakam [ 51 has found an elegant closed 

His 

However, after studying 
- . ‘ * --.I -- 2-maA-d 4-ha+ i t  -1jld more 

We studied a 

Unfortunately, the mathematical theory of Lame‘ 
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To make our boundary value problem well defined and analytically 

tractable, we adopted the following idealizations of the physical situation: 

If the coil 1) the coil is replaced by a single, circular current loop. 

needs €0 be more accurately modelled, this can be accqlisbed by 

considering it as a series of current loops and supercomposing the 

individual solutions. 

2) The current in the loop is taken to vary sinusoidally in time. That is 

I - I ~ C O S  wt - ~e {Ioeiut~ 

Io ,u are real constants. 

3 )  The propagation of the fields is regarded as instantaneous, that is, 

the fields change slowly with respect to their propagation time to 

points within the domain of this problem. Thus, all points in the 

conductor "see" a field of the same phase at the same instant in time, 

and the displacement current can be neglected. 

4) The conductor is isotropic, homogeneous, and non-magnetic with a 

relative permeability of one. 

applies and hysteresis can be ignored. 

Hence, within it Ohm's law (J - uE) 
- . .  c . 5) The conductor is modelled as a solid sphere. n i s  m o e i  i b  .L 

spherical shell as long as the skin depth is small relative to the 

thickness of the shell. 

6) The displacement of the center of the sphere from the axis of the loop 

This allows is considered small campared to the radius of the sphere. 

the use of an expansion about a position on the axis of the loop. 

7) Transcient effects are ignored and only steady state solutions are 

considered. 
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I. 'Ihe electr-gnetic vector potential 

The first thing we do is introduce the idealizations of our problem into 

Maxwell's equations to derive a boundary value problem for the vector 

potential A. Wglecting the displacement current, and consideringpaterials 

w i t h  relative-permeability of one,  axw well's equations are: 

( 4 )  0-B - 0 

From 0.B - 0, it follaws that B can be written as the curl of the vector 

potential A. 

( 5 )  B = VxA 

The condition V*A - 0 can also be imposed to  determine A uniquely. 

Substituting equation (5) into equation (3) yields 

a aA 

at aA 
( 6 )  VXE = - -- (VXA) - v x (- -) 

aA 
( 7 )  E = - - .  

at 

Assuming Ohm's law, J = uE and equation (7) yields 

We assume that the sources of the field are stationary and the field 

propagates instantaneously so it must have the same time dependence as the 

current loop. Accordingly, the vector potential can be written 

4 



where only the real part is of physical interest. 

then is proportional to the vector potential 

The eddy current density 

substituting equations (5) and (9) into equation (2) we obtain 

(10) V x ( k )  - ipoooA = k2A 

where k i ipooo. By virtue of the vector identity 

oX(VxA)  V(V*A) - O2A 

and the relation 0-A-0, equation (10) reduces to Helmholz's equation 

(lla) $A - k2A 

inside the sphere, and Laplace's equation 

(llb) $A = 0 

inunediately outside the sphere where the conductivity is zero. 

to equations (lla) and (llb) must be matched at the boundary of the sphere. 

According to Smythe [3, p. 305) the following boundary conditions must be 

satisfied. 

The solutions 

(1) A is continuous across the boundary 
L ------- ------ the b,rnaarv (2) The normal C O m p r l e i l L  UL Y -+-.b*.s-=-= - - - _ -  - 

- _ .  

(3) The tangential component of H = pB is continuous across any boundary. 

For this case p = p, inside the sphere as well as outside of it 60 the 

tangential camponet of B is also continuous across the boundary. 

Thus, 

(12a) A, 1r-a ~i 1r-a 

(12b) 1r-a 0% 1 r S . t  

where A, is the total vector potential outside the sphere and Ai is the total 

vector potential inside the sphere. 
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11. Calculating the vector potential of a current loop with respect to an 

origin off axis to the loop. 

To calculate the vector potential of a current loop, it is convenient to 

choose an origin on the symnetry axis of the loop. 

the total vector potential in the sphere, the synmetry of the sphere is most 

However, in calculating 

easily exploited by using an origin at its center. 

choices of origin, the vector potential of the loop is first calculated with 

respect to an origin on the axis of the loop and then is expanded about the 

center of the sphere. 

displacements of the center of the sphere from the axis of the loop. 

To benefit from both 
,. 

This methodwould be inappropriate for large 

The 

geoanetrical parameters in our problem are shown in figure 1. 

The vector potential of a line current is found from 

( 1 3 ) 4 - 3 i ; l i  Idl I 

where I is the current and can depend on time, 

dl = dl 2 is the line element directed along the current, 
IRI is the distance from dl to the field point. 

ExDandina 1RI-l in Legendre polynomials and integrating over the current 

loop we find (Appendix A ) ,  

Isl< IC1 

b is the radius of the loop 

s is the field point 

c is a vector to the loop 

P: (n*^c), P: ( n o s )  are Associated Legendre functions 

@s is the azimuthal unit vector /r 

7 



The Taylor expansion for a vector function can be written 

(16) f(a+r) - & - f(r) 0 (d*V)" 

n-o n! 

$ is a funct'ion of s - d+r, where r is the vector of the field point with 

respect to an origin at the center of the sphere and d is the displacement of 

the center of the sphere from the axis of the loop. 

expansion, 

Employing the Taylor 

- (d-V)k poIb P:(n*G) 4 
(17) pi * C - { - & VXP, (nor) r" r] . 

k-0 k! 2 n=l cn+'n(n+l) 

The displacement vector d has been chosen so that it is perpendicular to the 

axis of the loop (den - 0). 
of the loop is designated along the z-axis. 

as being along the x axis so that 

By the choice of the Legendre polymudal the axis 

It is natural then to designate d 

a 
f d - V l k  = (d-)k. 

ax 

In this case, a useful identity is [8 ,  p. 3611 

Also true is, 

a A  a 
ax ax 
- r = e,, which implies that d - r - d, so 

- 1 i ( m - 1 ) + -HI+  1 ei ( m +  1 ) + ]+<eia* rnd 
n - 1  (mtn)(men-1)HI e n-  1 

1 
r = - 

2 

n ia+ (19) (d-V)cr  e 



The important aspect here is that even after differentiation the basic form of 

each term is preserved. Each term is either of the form 

$eik'rlr or Pteik*rld. 

Since (d*V)d - 0, repeated application of d*V yields only more teqs of 

similar form.. This makes it possible to find a closed form for any pawer of 

d*V operating on 

is 

( 20) ( d-V)k P,, r" r 

Kdk - 
+ 

2 k - 1  

Pnrnr. The derivation is given in Appendix C. The result 
I .  

d. k-m-1  k-tn-1 p-k+l 
n-k+l 

k-1 n! 

-0 
c ( k - l )  - (-1) P 

(n-2m) ! m 

Using this result in equation (17) and the fact that d*V(VxA) - Vx(d-VA) we 
P 

obtain- - a, 

f. 
. p.  

2 n=l c"+'n(n+l) k-0 2 kl -0 (n-2m) ! 
k 

p,fb P', (ne;) n d 1 kn n! 
* (21)q = ox [- & c (-1 - c (-l)k-" (n) 

pk-2m A i ( k - 2 m ) t  n-k (n-r)e n-k 

.L - -_ - - - . -  .. 111. Calculating the totai vetx;crr Ejuiei icrai  i A A a L e i S  uii dre .w--  

The differential equations for the vector potential are linear so 

solutions can be superimposed. 

harmonic expansion for the inducing vector potential can be separately matched 

to boundary conditions to determine corresponding terms for the vector 

potential inside the sphere. 

vector potential inside the sphere. 

Therefore linearly independent terms in the 

The terms can be recombined to give the total 
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As has been mentioned, all of the terms of pi are either of the form 

A,,. ~xtf(n*C;)e~~*fr~ = %mfrxv[f(n*3)eim+ J 

or 

m e  first are .recognized as vector spherical harmonics. 

to Laplace's equation (using only tenus defined for all n-k) is 

The 'general solution 

o n  

n-o m-n 
(22) A. - C C pcIm [ rn+B,, in-' 1 t r x V ( c  (n-G)e"+ 1. 

The potential outside the sphere is a combination of that due to the current 

loop and that due to the eddy currents in the sphere. The potential due to 

the eddy currents must vanish as r approaches infinity so A,, must be 

ccunpletely determined by the current loop. There are no ran-' term in the 

vector potential of the current loop so B,, is completely determined by the 

eddy currents. Imnediately Ann is known. 

Likewise, the general solution to Helmholtz's equation can be writtin 

where 

I,(kr) = i-"Jn(ikr) 

K,(kr) - 1/2ni [J,(ikr)+iY,(ikr)] 

Jn(ikr) is a Bessel function of the first kind 

. n + l  

J, (ikr)cos( ikrn) - 3-, (ikr) 
Yn(ikr) = 

sin( ikrn) 

The function Kn+1,2 is singular at the origin, which is within the sphere, so 

Dnm-O for all n,m. So 
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The boundary conditions are met if (Appendix D) 
n-1/2 

( 2 ~ 1  )a An m 
(24) Cn, - 
A similar process is used for the terms of the form An, p(qeim+ rnex ). 

‘In - 1 1 2  (ka) 
c 

For these terms, the curl is taken first and is broken up into its Cartesian 

components. Prom Appendix E 
A i m +  n in+ n-1 ~~,vx(<(n*r)e r e, - A,,~{(W~)%-, (n*r)e r ey- 

- i [ (m+n)(m+n-l)Pi:: (n-2)ei‘n-1)+ rn-l+Pn-l m + l  (n.r)e 4 i ( m + l ) + r n - l l e z l ,  

2 

In Cartesian coordinates $AdAxe,+$Ayey+dAEez. Each component of 

Helmholtz's vector equation is an identical Helmholtz scalar equation. 

[p. 3751 and the arguments stated for the vector spherical harmonics, the 

general solutions for Ai and A, are 

Frm 

A: = c A nm J(rn+Bnmr-n-l )c(n*G)eim+ , j=x,y,z 
n-o 

obvious and thus 

The complete expression for the vector potential inside the sphere is 
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C 
( k r )  n! 

r-1/2 
PoIb OD - dk k 

(25) 4 - - cAn c - z(-l)k-B (k ) - 11n-k+l/2 n-k 2 n=l k=o 2kk! m-0 (n-h)! 

where 

IV. Calculating the average powe r dissipated in the sphere 

For a sinousoidally time dependent current density, the average power 

dissipated is 

1 
P=- [J* JdV.  [ 3  p. 3691 

u is the conductivity. 

The factor of one half arises from the time averaging over one period. 

r1c;nn omratinn 19) - -  

the average power becomes 

The displacement d of the center of the sphere from the axis of the loop 

is smallt so only terms to first order in d will be considered. 

be justified by examining equation (25). 

This can 

Each term of Ai is propotional to 

k n-k-1/2 d a  

12 



The loop must be outside the sphere so a<c and d is assumed small so (d/c)is 

small. From equation (251, to first order in d 

eit+e-" eit*it 

and coso- ; sin+ = . 
2 2i 

Study of equation (27) reveals that the angular part of the integral 

(equation (26)) to first order in d has terms of the form 

(28a) $ (OP, (no;) x r)  (VP, (no?) x r)dQ 

These are evaluated in Appendix F with the results 

$ (OPnxr) (O[P~-,cos+] x r)dQ - 0 
1 4 ( n n x r )  (1 p,_,ey + Pl-l sin4 e, )dQ = 0, and 

4m(n+l) 

2n+l 
f (VPnxr) (OP,xr)dQ = % , I  

Thus, all of the first order terms vanish and only the zeroth order 

contributes to the power dissipation. The expression for the power is now 

4m( n+l ) ow 2 poIo2b2 
P =  E An2 ( k r )  12r2dr . 

8 n=l 2n+l 

Following the logic of Sonnabend (see Appendix I) 

; r-a. ( x )  - -I-- ex 
(2rut)"2 In+1/2 



c 2 

. .  P O W  
where d rn (- )‘I2 is the skin depth . 

Thus, . m2pon8310b2 QD 

P -  C An2 (2n+l)n(n+1)a2” 
4 W l  

nIO2b2 - (P: (nos) 1’ (2n+1)a2” 
- - c  

2n+2 ab n=1 n(n+l)C 

V. Calculating the force on the sphere 

The force on the sphere due t o  the external magnetic f ie ld  is  

F = JJXECIV = Re {-iw SAi x (VxAi  )dV) 

where Ai is the to ta l  vector potential inside the sphere and pi is the vector 

potential due to  the current loop alone. 

currents and the f ie ld  of the eddy currents is of no interest. 

The interaction between the eddy 

The sphere 

cannot move i t se l f  and thus that force must be negated by internal stresses 

about which l i t t l e  is known. 

Evaluating V q  t o  f i r s t  order i n  d, there are terms of the form 

(Appendix H): 

zeroth order 
A 

( 29a ) Vx ( 0 r” Pn x r ) = n ( n+l ) r” - ’ Pn r - ( n+l ) r” - s inePn ’ ̂e 

f i r s t  order 

14 



1 '  A rn-2sin+ ~ 

-nrn-2 sin6Pn- cos+ e - n Pn-1+ sine 
c 

A sin+ h 1 (29c) Vx[V(rnPn)xex] = rn-2 [-(n-l)P,,-,cos+ r̂ + sinW;8,+ pn+l 
sin6 . .  

are 

The term t o  f i r s t  order is d of 41 are found fram equation (27).. These 

of the form: 

zeroth order 

(30a) r-1'2CnIn+1/2 (kr)VPnxr = f1l2 Cn I n +  1 / 2 (kr)sin6$; 

f i r s t  order 

( 3 0 ~ )  r-1/2Cn-lIn-1/2 ( k r h  Pn-p, 

(30d) r-1/2Cn-11n-1/2 (kr 1%- s i n 0 q  

From the cross product of the zeroth order terms of Ai wi th  the zeroth 

order terms of VXA, the zeroth order terms of the force are obtained. From 

results i n  Appendix K the force 
LL- r r . r r s n C  ;e 
-.._ -. 

OD 

-poIo2b2m C 

2 
Fo = - n=l 

This is identical t o  the force, 

axis of the loop. 

to zeroth order, averaged over one period of 

found by Sonnabend [p. 541, on a sphere on the 

The f i r s t  order term for the force is found by taking the cross product 

between the zeroth order terms of Ai with the f i r s t  order terms of Ail and the 

cross product between the f i r s t  order terms of Ai and the zeroth order terms 

of p i .  The calculations are i n  Appendix J. The results is 
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-rqv,xO2b2d - IPi(n*c)l A 2 a 2n-1  (n2+2n-1) 

cZn+ n( n+l) 
f -  E t  

4 n=l 

* +  
cZn+‘ (n+3) 

 he zeroth order force is one strictly along the axis of the loop, and the 

first order force is one strictly in the direction of the displacement fram 

the loop. At first glance the first order force appears to return the sphere 

to the axis of the loop, however evaluation of the rnmmation should be done to 

be sure. The first term in the sunmation is definitely restoring because 

(P: (n.2) 1’ - >O 

and it should dominate because of its - dependence versus the other terms 
a2n-l 

a2n+2 P + l  

dependence. 
c2 n+ 4 

v1[ Calculating the torque about the center of the sphe re 

The torque is found from 

r = j r  x (J x B)~v. 

J x B was calculated to first order in d when calculating the force. Finding 

the terms of r x (J x 8 )  is then trivial. 

simply a matter of trudging through the integrals as was done in calculating 

the force. 

torque to zero order, and to first order the torque is 

Calculating the torque then becomes 

This is done in Appendix L. The results are that there is no 

(n*C^)a2 n + l  ( 2n3 +3n2 +3n-2 + Pn (n*c)Pn+l 2 n - 1  1 4 1  rw,1’b2d ; r(n-6)a 
c2 n +  (n+l) (n+2 ( 2n+l) c2 n + 1 r‘ = -ey 

4 n=l 

Thus the axis of rotation is perpendicular to the displacement off axis. 

a displacement in the opposite direction (d -P 4) the torque changes sign. 

This means that as long as the sphere stays near the axis of the loop, the 

angular acceleration will average to zero. 

For 

16 



From equation (13) the vector potential of the loop is 4-.p- dl 

- 4K IRI 
1 

Expand -* in Legendre functions. 
IRI 

' (7,p. 5391 

c is the vector to the loop, s to the field point. 

separated from functions of s by using the addition theorem for Legendre 

functions in terms of spherical harmonics. 

the loop define the z-axis. 

Functions of c can be 

Let n be the normal unit vector to 

U 

where < ( X I  - (1-x2 )1'2 - P"(X) .  (7 ,  p.5821. 
axm 

For the purpose of simplicty, the coordinate system can be defined where +,-o. 

Since c=Icl is constant over the loop as in n-c, the line integral amounts to 

an integration over vc.  

= W+(-sin+ex+cos+ey 

Using the following orthogonality relations, 

sin+ cos mg dg = o 

cos0 corn+ d+ = K & ~ ,  , I 
17 



poIb * Pt(n.2) 
$ - -  E S " P ~  (n-<)e=. 

2 n-1 c"+ln(n+l) 

The coordinates were fixed relative to s when was set to zero. This 
A can be "unfixM" by letting ey - +,, and the coordinates are agaiqindependent 

Of 8.  mUS . 
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Prom the chain rule, 
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APPmwIx C 

Using equation (19) with llto, 

(d-V) (P rnr)= - rn-l [n(n-l)Pn,l -le-i+ -'n - 1 'ei']r + Pnrnd. 
d2 

2 n* 

Repeating this yields 

n-2 -1  - d2 

4 
(d=V)' (P;rnr) = -r [n(n-l)(n-2)(n-3)Pn-1e 2i'-2n(n-1)P~-2 + P~-1e2'']r 

d 

2 
+ -  rn-' [ n( n-1 )Pi! e-' '-Pnt e' ' Id 

The pattern holds for further differentiations with the result 

rn-k+l d. (-l)k-~-l k-2m-1 kdk--' k n! 
2 k - 1  c ( k - l )  m - 'n-k+l (n-2m) ! 

+ 
=0 

20 



Taking each term independently, I+ I,=,- Ae I r m a  implies that 

(Dl) [qrB(r"+Bn,,r-"-' )rxqei"* Irl,=[Cn,r-1/2 'n+1/2 (kr)rxqeiB* I,,, . 

(ka) (D2) pSI.(an+Bnma-"-' - CnBa I ~ + ~ / ~  

The next boundary condition is that V U i  I r m a  - VxA. I r e .  

equation (Dl), cancelling the angular dependence and using equaticm (F2) 

yields 

rxVPe'*'" can be cancelled so, n 
- 1 / 2  

Taking the curl of 

Vx[An,( rn+Bnmr-n-l ) I,=, = VX[C,,,,~-~'~I~+~/~ ("1 I ,=,  
Carrying out this differentiation in spherical coordinates and equating 

components yields. 

(D3) Anm(mn-(n+l)Bnma-"-l ) = Cnm{-l/2Z3/21n+l,2 ( ka)+a-ll2 kItn+l/2 (ka)). 

From [3, p. 981 

Substituting this into (D3), solving for B,,, in (D2) and then solving (D3) for 
C,, i n  tern of A,, yieids 

21 





To evaluate (28a) and (28b), refer to the theory of vector spherical 

harmonies which are defined in [9, p. 211-2141 as 
* 

-i (2n+l)(n-m)! 
. .  =V{ (-1r [ ~ ~ / ~ f e ' ~ + l  . ' 

[n(n+l) l1l2 4K( ntm) 1 
& m  - 

Wnxr - -i [ & O f  2n+l 

and 

The vector spherical Harmonies satisfy the orthogonality relation 

Xln *>4;.dQ = 61, # &mm, 19, p. 2111 5. 
It can be immediately seen that (28b) vanisnes. To evaluate i28a), 

n( n+l ) 1( 1+1) 

2n+l 
(OPnxr).(OP,xr)dQ = -4n[ P2 21+1 11'2[<0 -X,,dQ 

n( n+l ) 1(1+1) 

21+1 
= 4K[ Y2 [ 

2n+l 

4 rm ( n+l ) 

2n+l 4 3  1 
= 

To evaluate (28c), the following relations are useful: 

apn h 

i) VPnxr = - - + 
ae 

ii) bl ey = cos+ 

iii) ez = o 

23 



Using i), ii) and iii), (28c) becomes 
& 

. .  

which, using iv) vanishes. 

2 4  



The following argument is from [l, p. 531. 

(eX-(-1)"e-" (n+l)! 
c -1/2 

(XI = (2m) 
l=o ll(n-1) !(-2x)' In+1,3 ~ 

It has already been assumed (assumption 5 of the introduction) that the skin 

depth d is small compared to the radius of the sphere. 

current density will be negligible except when r-a. 

current density the argument 

m i s  means that the 

In the equation for the 

r r L 

x=kr=( ipewo)"2 r = ( 2i)'l2 L = (l+i) -. 
d d 

But for r-a + x - (l+i) a/& is a large number, so the sumation e" dominates 

over e-". (-2x)" goes quickly to zero as 1 increases, so the 1-0 term of the 

sumation dominates. Thus 

Remembering that most of the current density is at r-a and that over small 

variations in r, 1-+1,,2 (kr) will fluctuate much more than small powers of r,  it 

is reasonable to let all of the functional variation lie in the exponential 

and set r=a in the radial integral for small powers of r .  Thus 
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Zeroth order terms of % have the form V(rnPn)xr, and first order terms are of 
the form V(rnPn)x e, and V(r 
form 

cos+)xr. Pn-l So the terms of 0% have the n-1 1 

and 

= (r*V)V(fY) + 2V(fY). 
For f(r) = rn, 

ae 
rn - 1 

A ay ,.. ay A 

and (r*V)V(fY) = n(n-l)rn-' Yr + (n-1)rn-' - 8 + (n-1) - - +. 
ae sine a+ 

n n sin+ ,. 
pn+l 

a 
vx[v(r"Pn )xe, 1 = -v(rnPn) = rn-' [-(n-l)Pn-lcos+r + sine ppn e + -- 

ax sine 
1 
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APPmwIx I 

Using (29a) and (30a), the zeroth order terms of p4 x (W+) have the form, 

r-"' Cn I n  + 1 / 2 ( kr rl-l [ 1 ( 1+1) Pl sinePn &c;-( 1+1) sin={ s i n e n  &xG] . 
&3 - - -sin*s + case cosge. + case sin+ey. 

-we =. G = cases + sine costex + sine sin@=. 
A A  

Performing the angular part of the integral. 

1 1 
1 

21+1 
U s e  sine P, ' = pi, sine p1 - - [Pl+l  - Pl-l 1 (from Appenaix N) 

2r r 

and that lo sin+d+ = cos@+ =o. men 

A -4m(n+l) n(n-1) (n+l)(n+2) - 
2n+3 

(11) l ( l + l ) P l  s impn  'edn = [xi- C,  1+1 s 2n+l 

Then use sineP, - P i ,  s in  eP,: = Pi, and 
3 A 

1 coseP; = - [ ( l + l ) ~ ~ - ~  + lP i+l  ] t o  f ind 
21+1 

n( n-1 ) 

2n-1 
( I 2  1 I sineP, 'sinePn 1 ( 1+1 ):dn - 'n, 1-1 +-  

Using the results from Appendix G, 

[tr-1/2c n I n + 1 / 2  (kr )  rn r2dr - 
Putting i n  the necessary constants 

the radial part 

8 ( 2n+l )a 2 n + l  

is 

( l + i ) k  

and averaging Over one cycle yields, 
2 2  1 - 1  

-poIo b R Pn(n*c)Pn+1(n*~)a2n+1 
E'" = c e= 

2 n-1 c ~ ~ + ~  (n+l)  a v o  
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The cross product between (298) 

(51) r-1/2Cn-11n-1/2 (kr)r'-' { 

and (3Ob) yields 

l+l)Pl rine cos0 cos+ e, ] . 
case sin4 ey 

sin+ -sin9 e, 

sine [cos+ ey 1 b) - - Pn- 1( 1+1 )P1 

c )  -sin2ep~~,cos+(1+1)~,' 

Similarly for (29a) with (30c) : 

t; -ill?- ( 1+1 )sin!% ' Pine ex 1 
1 L-cose cos+ esJ 

For (29a) with (30d) 

(53) r-1'2cn-l (kr1rl-l { 

I* sine cos+ ey 

[ -sin0 sin4 e, 
1 a) pn-, sin+l(l+l)P, 

b)-Pi-, sine( l+l)sineP; 

For (29b) and (29c) with (30a) 
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1 
From the 0 dependence, it can readily be seen that only the x-components of 

these terms will survive integration. 

Taking (51) first and completing the angular integration,'use the 

following identities: 
Z(1 

i) /?H+ - /sin2+d4 D = 

1 iv) sineP, = P, . 
Then, 

J [ -sineP:; 1 ( 1+1 )case cos2 OP, + - Pn-1 1 ( 1+1 )P1 -sin3 eP:: ( 1+1 )P1 cos2 0 IdQ 
s in2+ 

sin6 

2 1  2 1  
1 

-nl'[ ( n-1 ) npn - 1 ( 1+1) P, - ( n-1 ) sine$ - 1 ( 1+1) Pl - - [ - ( n-1 ) P, +n Pn - ] ( 1+1) P: ldcos0 
-I 2n-1 

1 1 ] and this equals 
J. 

Use sine P, - - R + l  - Pl-1 21+1 

1 

2n-1 
- -  [-(n-l)2n-1)2P: + n2 Pn', ](l+l)P: dcos6. 

Using the orthogonality relation for Legendre polynomials, this simply equals 

2nn(n+l)(n-1)~ 

2n-1 9 , 1 *  
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To do 

ii) 

the same for ( J 2 )  use, 

1 

1 
2- 

. .  21+1 
s in  e,’ - - [ - l ( l+ l )P l+l  +l( l+l)Pl- l  I 

and orthogonality to  find that 

J ~ ( w n - l i ( i + i ) p l c o s e  + ( l + l ) s i n 2 e l  

For (53)  use 

l l  R+l - Pl-1 
1 

1 
i )  s i n e  P, - - 

21+1 

1 

21+1 
ii) s i n e  cosep, = - [(1+1)P,’, + lP1t l  I 

for ( J 4 )  use 

1 
i )  s i n e  cose Pn‘ - - ~ Hn+1)Pnl1 + wn:, I 

2n+l 

A 

iii) sin’ep::, - [-(l-l)’P: + l2P;_, ] 
21-1 



to find that 

[ ( 1-1 ) Pt - cos0sinW; cos2 0 + sin' +Pi ' ( 1-1 )Pn ' cos2 0 IdQ 
J 

(Jl), (J2), (53) all have the same radial terms and Constants in the total 

force expression, thus their angular terms can be added together. , 
' 

n(n+l) (n-1l2 2n2 (n+l) 2n(n-l)(n+l) + + 
2K I 2n-1 2n-1 2n-1 

Because of the Kronecker delta, the radial part has the form 
2n-1 (l+i)(r-a) 82 (211-1 )a - exp -- a2n-1 [ ] dr = 

2i 

The radial part of (54) becomes 

2n+l a 2n+l (l+i) (r-a) 82 (2n+1 )a [ a2n+1exp [ ] dr =- 
. _  k 2i 

Putting all of this together w i t h  the appropriate constants and averaging over 

one cycle yields the f i r s t  order term of the force. 

+ 
(n2+2n-1) pn 1 A 1  (n.c)pn+2 (n*&(n+l) -woIo2b2d - 11% ( n e e )  I2a2"-' 

4 n-1 n( n+l ) C 2 n + 4  (n+3) C2n+2 
c Ti. * 

, 
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For the zeroth order part of the torque? take the cross product of r w i t h  

(51) and (52). 

SO? 

For (JZ), rxc = 0,  so that integral vanishes. For (Jl), 3x ê - + - 
. .  

(Kl) r x ~l(l+l)PlsinW~&P - r~l(l+l)PlsinW~idQ. 
But, 3 = -sini e. + cos+ e, 
and p i n w  - y c o s w  0 = 0.  

so (Kl) vanishes also. Thus there is no torque to zeroth order in d. 

The first order terms can be found by taking the cross product with r and 

equations (Jl), (521, (53) and (54). Noting that 

rxr = o 

rx6 = r3  

rx+ = -re 

rxq = -sine sin+ e, + case e,, 
rxey = -cos9 e t sffie ces+ e, 

rxe. = -sine cos+ e,, + sine sin+ ex 

A 

c 

A 

A 

These terms are readily found. 
yields 

The cross product of r with equation (Jl) 

( ~ 2 )  r-”2Cn-lIn-1,2 (krb’  I 

a) -sineP~l,cos+l(l+l)~, 
-sin+ ex 

[cos+ e= 1 
-sine e. 
case cos+ ex 1 cose sin+ ey 

sin+ , 
sine 

b) - P,- f 1( 1+1 )P1 

The cross product with equation (J2) yields 
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a) npn-,l(l+1)~, 

b)-npn_, (l+l)sineP,’ 
L sine sin2+ e, 

For (53) 

1 sine cos+ e, 
s ine  sin+ e, 1 

a)  Pn- s in+l  ( 1+1) Pl 

sine case e, 1 1 b) -P,,-,sin+(l+l)sin@; 

Finally, for ( 5 4 ) ”  

( ~5 1 P’’ c,, I,,, , (kr)r l - ’ {  

( 1-1 )’ P, - cos+ sinep; 

using 

o = fnsin+d+ = JYcos+d+ = j:*cos+sin+d+ = l‘cos’ +sin+d4 = 

- *  ‘ - L -  ---&:-- ---- A r ~ r \  a t r r l r r r t e  the anmlar only tne y-conpr1eriL.s ~ U L V ~ V G  uii - .  - . 
part of the integral for terms of the form of equation (K2) use 

2n 
i )  S, cos’+d+ - n = 

2 

2n-1 iii) jPn-,P1dQ = - ‘n-1,l 
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Then integration of the angular part of (e) yields 

evaluate the angular part of (K3) use 

sin2-+ - p cos2+ - R 
to eliminate the + dependence. 
~lmp,-~l(l+1)~~cos~e + nn~,,-~l(l+l)p~sin~e + en-, (~+I)P; 

Using 

The angular part being integrated i s  then 

mse. 

cosep,' = lPl + pl-; this becomes 
2 n n ~ ~ -  1 ( 1+1 )pl + mn- ( 1+1 

I 4m2 (n-1) 

sin' e. 

The first term can imnediately be evaluted. It's integral is 

[ 2rmPn- 1 ( 1+1 )P1 dcose - t - r , l  
-I  2n-1 

Using 

l(1-1) 
sin2eplIl - - [P1-, -pl I, 

21-i 

the second term yields 

Doing the same with (K4). Use 

1 iii) sine Pl_I1 - Pl-l. 
Integrating, the angular part yields 

2m(n+2)(n-l)(n+l) 2 m 2  (n-l)(n-2) 
+ 'n,l+l 'n, 1-1 (2n-1)(2n-3) (2n-l)(2n+l) 
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Equations (K2) , (K3) , (K4) all have the same radial dependence so their 

angular parts can be added. This yields 

Znn(n+l) (n+2) 2nn2 (n-l)(n+l) 
'n, 1-1 + ' n , l + l  

L -1 2n-1 

For (a) use . 

1 sin6P,,* = Pn . 
Thc Integral hen yields 

2 d  (n+l I 
% , 1 - 1  2n+l 

Integrating the radial part of these terms is similar to that integrations 

done in finding the force. 

Again, using the same approximations as were used in finding the force and 

2 n - 1  a( 2n-1)a 
I (kr )  rn+1-1/2 L. t 

(l+i)k J';cn-l n - 1 / 2  

So, the final expression for the first order term of the torque is 
1 1 -eynpOIo2b2d pn (n-c)Pn+l (n*c)a2n+1 (2n3+3n2+3n-2) 

+ c ~ ~ +  (n+l) (n+2 )2n+l) 
f E  

4 n=l 
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. 
a 

ApppMlIx n 
Another expression for the current density in the sphere 

Ludwig Hannakam found an exact integral form for the eddy current density 

in conductingcsolid sphere in the presence of an alternating current loop of 

arbitrary shape or orientation to the sphere. 

by drawing lines through the center of the sphere and the current loop. 

then shawed k t  the vector potential due to the loop can be caldated by 

cansidering radial magnetic dipoles on the constructed surface. 

of a conducting sphere in the presence of a magnetic dipole of oscillating 

dipole moment has a known solution. 

the surface leaving only an integral over the current loop. 

% 

He first constructed a surface 

He 

The problem 

He partially completes the integral over 

His solution is 

i 4 0 1  Q) 2n+l 1 

4~ n=l n(n+l) a,, 
J=- Z - -fn(kr)<(r) 

P 
where an = (- -1)n fn(ka) + kafn-,(ka) 

4 
- 3 

kr 
fn(W - (- ) 1 / 2  I n + l , 2  (W 

a is the radius of the sphere 

rc is a vectbr to a point on the current loop (source point) 

r is the field point in the sphere 

dSc is a line element on the current loop 

I = Ioeiwr is the current in the loop 
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